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Abstract. We establish a connection between (Approximately) Real Mutually Unbiased

Bases (ARMUBs) of the d dimensional real vector space Rd, where d = 2n, and Walsh

transform of certain highly nonlinear (n,m)-Boolean functions. When n is odd, then the

state of the art results in this domain allow constructing 2 Real Mutually Unbiased Bases

(RMUBs), whereas for n even this is d/2 + 1 [Cameron and Seidel, 1973]. This result has

been proved using a different technique in [Boykin et al., 2005]. Here we present another

proof using the Kerdock codes and interpreting them as Boolean functions. Further, we

show that for both odd and even n we can construct d + 1 many ARMUBs with a little

compromise in the inner products. More precisely, when n is odd, the inner product between

two vectors from two different bases is at most
√
2/

√
d and is achieved for Almost Bent (AB)

functions. When n is even, then this bound is 2/
√
d. Moreover, we show that using the

generic construction method of Cao and Chou [Bull. Aust. Math. Soc., 2016], one can relax

the permutation condition on f by reversing the roles of a and b.

1. Introduction

The history of mutually unbiased bases goes back to the seminal work of Schwinger [16],

where he showed that if B and B′ are two orthonormal bases of the d-dimensional Hilbert

space Cd such that

|⟨b, b′⟩|2 = 1

d
for all b ∈ B and b′ ∈ B′,

then no information can be retrieved when a quantum system which is prepared in a basis

state B is measured with respect to the basis B′. We say such bases B and B′ Mutually

Unbiased Bases (MUBs). MUBs have applications in quantum cryptography, where they are

the quantum states used in most QKD protocols [3, 4, 9]. Let N(d) denote the maximum

cardinality of any set containing pairwise MUBs of Cd. It is well-known [2, 11] that N(d) ≤
d + 1 and the equality holds when d is a prime power. We call this set of d + 1 bases, a

complete set of MUBs, or simply a complete MUB. The exact value of N(d) is not known for

any dimension d which is divisible by at least two distinct primes, not even in the smallest

dimension d = 6. A long-standing open problem in quantum physics is whether or not

N(d) = d+ 1 holds for any dimension d ≥ 6 that is not a prime power.

Another interesting problem in this direction is to find MUBs which are also real. Such

MUBs are called Real Mutually Unbiased Bases (RMUBs). Let M(d) denote the maximum
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cardinality of any set containing pairwise RMUBs of Rd. As the problem is more constrained

here, and thus M(d) is even small. A general upper bound [6, 11] for M(d) is d/2+1. In the

particular case when d = pn, where p is a prime number, we have

M(d) =


1 if p > 2,

2 if p = 2 and n is odd,

d/2 + 1 if p = 2 and n is even.

One may refer to [5, Table 1] for a comprehensive view on RMUBs. This scarcity of MUBs

of Cd for composite numbers d and RMUBs of Rd led the authors of [17] to define what is

now known as Approximately Mutually Unbiased Bases (AMUBs).

Definition 1.1. Let Cd be the d-dimensional Hilbert space. The orthonormal bases of Cd

in the set B = {B1, . . . , BN} are called AMUBs if for all u ∈ Bi, v ∈ Bj , 1 ≤ i ̸= j ≤ N , we

have |⟨u, v⟩| ≤ δ, where

δ ∈
{
1 + o(1)√

d
,O

(
1√
d

)
, O

(
log d√

d

)}
.

When AMUBs are also real then we call them Approximately Real Mutually Unbiased

Bases (ARMUBs).

1.1. Contribution & Organization. In this extended abstract, we shall restrict ourselves

to dimensions d = 2n, where n is a positive integer, and study the problem of constructing

RMUBs and ARMUBs of Rd from the perspective of (n,m)-Boolean functions, where m ≤ n.

We first establish a connection between the inner product values of two vectors taken from

two different bases of Rd and the Walsh spectrum of (n,m)-Boolean functions. In this regard,

in Section 2, we state some preliminary results that will be used in subsequent sections. Our

contributions are as follows.

• Section 3 connects (n,m)-Boolean functions, where n is even and m ≤ n, to RMUBs.

In Subsection 3.1, we present two constructions of
√
d+ 1 many RMUBs, where d =

2n, using bent (n, n/2)-Boolean functions and maximum number of bent component

(n, n)-functions. This is a suboptimal result as we can have at most d/2 + 1 many

RMUBs.

• In Subsection 3.2, we describe a methodology to obtain d/2 + 1 many RMUBs using

Kerdock codes. The main result is presented in Theorem 3.5. Note that this was

first identified in [7] and later an alternative proof was given in [5]. Our result is

arrived through a different technique exploiting the properties of the bent functions

in Kerdock codes.

• In Section 4, we consider the approximate versions of RMUBs. Given the tight upper

bounds from [7], the relaxation of inner product values is mandatory. We construct

d+1 ARMUBs for both odd and even n. In our construction, when n is odd, the inner

product between two vectors from two different bases is at most
√
2/
√
d , and this

significantly increases the number of ARMUBs to d+ 1 from only 2 RMUBs, with a

slight compromise in the inner product values. This result is available in Theorem 4.2
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and is achieved for Almost Bent (AB) functions that exist only if n is odd. When n is

even, then the inner product values in our construction are bounded by 2/
√
d and this

result is explained in Theorem 4.4. Here, the improvement is from d/2 + 1 RMUBs

to d + 1 ARMUBs by doubling the inner product values. These results have been

obtained exploiting different classes, for example, Gold, Kasami, Welch, Niho and

Inverse functions. Additionally, we have noted that using the generic construction

method of [8], we can relax the permutation condition of the function f by reversing

the roles of certain parameters, namely a and b.

Section 5 concludes this extended abstract.

2. Preliminaries

Let Fd be the finite field with d = pn elements. In Fd, we have two finite abelian groups,

namely, the additive group and the multiplicative group of Fd. In this extended abstract, we

shall mainly focus on the characters pertaining to the additive group of the finite field and

we shall use the term additive characters of Fd for them. Let Trn1 be the absolute trace map

from Fd to Fp, then the function χ1 defined by

χ1(c) = e
2πi
p

Trn1 (c) for all c ∈ Fd,

is a homomorphism from Fd into the multiplicative group U of complex numbers of absolute

value 1, and is called an additive character of Fd. All additive characters of Fd can be

expressed in terms of χ1 and are defined as, for b ∈ Fd, χb(c) = χ1(bc) for all c ∈ Fd.

We can obtain the trivial additive character χ0 by taking b = 0, for which χ0(c) = 1 for

all c ∈ Fd. The additive characters of Fd satisfy the following orthogonality relations. For

additive characters χa and χb, we have

(2.1)
∑
c∈Fd

χa(c)χb(c) =

0 for a ̸= b,

d for a = b.

Let χ be a nontrivial additive character of Fd, and let f(X) ∈ Fd[X] be a polynomial of

degree ℓ > 0. Then the sums of the form
∑

X∈Fd
χ(f(X)) are called Weil sums. The problem

of evaluating such character sums explicitly is difficult. It is easy to observe that when degree

of f is 1, then the Weil sum is zero. When the degree of f is 2 and the characteristic of the

finite field is odd, then (see [13, Theorem 5.37])

(2.2)

∣∣∣∣∣∣
∑
X∈Fd

χ(f(X))

∣∣∣∣∣∣ = √
d.

For polynomials of degree ≥ 3, we have following bound for the absolute value of the Weil

sums, which is popularly known as Weil’s bound.
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Lemma 2.1. [13, Theorem 5.38] Let f(X) ∈ Fd[X] be a polynomial of degree ℓ > 0 with

gcd(ℓ, d) = 1 and let χ be a nontrivial additive character of Fd, then

(2.3)

∣∣∣∣∣∣
∑
X∈Fd

χ(f(X))

∣∣∣∣∣∣ ≤ (ℓ− 1)
√
d.

The first result on explicit sets of complete MUBs in the case of primes p ≥ 5 was due

to Alltop [1]. Using the absolute value of the Weil sums (2.2) for polynomials of degree 2,

Klappenecker and Rötteler [12] generalized the results of Alltop [1] to prime power dimensions.

More precisely, using Weil sums (2.2), the authors gave a short proof of the following lemma

which was first proved by Wootters and Fields [19] and later proved by Chaturvedi [10] and

Bandyopadhyay et al. [2] using different techniques.

Lemma 2.2. [12, Theorem 2] Let Fd be a finite field of odd characteristic. Define Ba =

{va,b | b ∈ Fd}, where

va,b =
1√
d
χ(aX2 + bX)X∈Fd

.

Then the standard basis B∞ and the sets Ba with a ∈ Fd form a complete MUB of Cd.

In [8], Cao and Chou used the orthogonality of additive characters and the Weil bound (2.3)

to give the following generic constructions of AMUBs of Cd using permutation polynomials

over the finite field Fd.

Lemma 2.3. [8, Theorem 3.1] Let ℓ be a positive integer with gcd(ℓ, d) = 1 and f(X) ∈ Fd[X]

is a permutation polynomial of degree ℓ over Fd. Denote by Ba = {va,b | b ∈ Fd} the set of

vectors given by

va,b =
θ(a)√

d
χ(aX + bf(X))X∈Fd

,

where θ is a map from Fd to C such that |θ(a)| = 1 for all a ∈ Fd. Then the standard basis

B∞ and the sets Ba with a ∈ Fd form AMUBs of Cd.

In the above construction, for any permutation polynomial f(X) ∈ Fd[X] of degree ℓ with

gcd(ℓ, d) = 1, we get an upper bound δ = (ℓ− 1)/
√
d. In the remaining part of this extended

abstract, we shall assume that p = 2 and denote χ(X) by (−1)Tr
n
1 (X).

3. Connecting Boolean functions and RMUBs

In this section, we shall show the relation between the Walsh spectrum of (n,m)-Boolean

functions and RMUBs of Rd, where d = 2n. Let f be an (n,m)-Boolean function, where

m ≤ n. We denote, by Trn1 and Trm1 , absolute trace functions from Fd to F2 and from F2m to

F2, respectively. For any a ∈ F2m and b ∈ Fd, define the vector

(3.1) va,b =

(
(−1)Tr

m
1 (af(X))+Trn1 (bX)

√
d

)
X∈Fd

.
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Then the set Ba = {va,b | b ∈ Fd} forms an orthonormal basis of Rd. As, for any b1, b2 ∈ Fd,

we have

(3.2) ⟨va,b1 , va,b2⟩ =
1

d

∑
X∈Fd

(−1)Tr
n
1 ((b1+b2)X) =

1 if b1 = b2,

0 otherwise.

Let B = {Ba | a ∈ F2m} be the set of 2m orthonormal bases of Rd. It is easy to observe that

the inner product of two vectors va1,b1 and va2,b2 , taken from two different bases Ba1 and Ba2 ,

is given by

⟨va1,b1 , va2,b2⟩ =
1

d

∑
X∈Fd

(−1)Tr
m
1 ((a1+a2)f(X))+Trn1 ((b1+b2)X)

:=
1

d
Wf (b1 + b2, a1 + a2).

In the theory of (n,m)-Boolean functions, Wf : Fd × F2m → Z is called the Walsh transform

of f . The Walsh spectrum of f is the set of values {Wf (b, a) | b ∈ Fd and a ∈ F2m}. A highly

nonlinear function f is one where all the values in the Walsh spectrum have small magnitude.

This relationship suggests that highly nonlinear (n,m)-Boolean functions f can be used to

construct RMUBs and ARMUBs. It is well-known that

(3.3) max
a∈F∗

2m , b∈Fd

|Wf (b, a)| ≥
√
d,

and is known as the covering redius bound. The (n,m)-Boolean functions f which attain

the bound (3.3) with equality are called bent functions. Bent functions are extremal com-

binatorial objects with several areas of application, such as coding theory, maximum length

sequences, cryptography, the theory of difference sets to name a few. We refer interested

readers to the books [14, 18]. In the following subsection, we shall use bent components of

(n,m)-Boolean functions to construct RMUBs of Rd.

3.1. Bent components of (n,m)-Boolean functions and RMUBs. Let f be an (n,m)-

Boolean function with n even and m ≤ n. Boolean functions Fa := Trm1 (af(X)) for a ∈ F∗
2m

are called component functions of f . An (n,m)-Boolean function f is called bent (sometimes

also called vectorial bent) if and only if all its component functions Fa, a ∈ F∗
2m are bent.

Equivalently, f has 2m−1 bent components. Since bent (n,m)-Boolean functions exist if and

only if n is even and m ≤ n/2, the maximum number of bent components of (n,m)-Boolean

functions with m > n/2 is strictly less than 2m − 1. For (n, n)-Boolean functions f with n

even, Pott et al. [15] showed that the number of bent components can be at most 2n − 2n/2

and that this bound is sharp. An (n, n)-Boolean function which attain this bound is called

maximum number of bent components (MNBC) (n, n)-function.

Recall that, when d = 2n with n even then we have at most d/2 + 1 RMUBs of Rd. Here,

we give two constructions of RMUBs from bent components of (n,m)-Boolean functions.

Our first construction uses bent (n,m)-Boolean functions and give 2m + 1 RMUBs. Since

bent (n,m)-Boolean functions exist only for m ≤ n/2, this construction can give at most
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2n/2 +1 =
√
d+1 many RMUBs. In the following theorem we shall use bent (n,m)-Boolean

functions, where n is even and m ≤ n/2, to give 2m + 1 RMUBs of Rd.

Theorem 3.1. Let f be a bent (n,m)-Boolean function, where n is even and m ≤ n/2.

Denote by Ba = {va,b | b ∈ Fd} the set of vectors given by

va,b =

(
(−1)Tr

m
1 (af(X))+Trn1 (bX)

√
d

)
X∈Fd

.

Then the standard basis B∞ and the sets Ba with a ∈ F2m form RMUBs of Rd.

Proof. Let ei be an element of the standard basis of Rd. Then, for any a ∈ F2m and b ∈ Fd,

we have

|⟨va,b, ei⟩| =

∣∣∣∣∣
(
(−1)Tr

m
1 (af(X))+Trn1 (bX)

√
d

)∣∣∣∣∣ for some X ∈ Fd =
1√
d
.

The orthonormality of the bases Ba, where a ∈ F2m has been shown in (3.2). It only remains

to show that the absolute value of the inner product of two vectors taken from two different

bases is exactly 1/
√
d. For any a1, a2 ∈ F2m , a1 ̸= a2 and b1, b2 ∈ Fd, we have

|⟨va1,b1 , va2,b2⟩| =
1

d

∣∣∣∣∣∣
∑
X∈Fd

(−1)Tr
m
1 ((a1+a2)f(X))+Trn1 ((b1+b2)X)

∣∣∣∣∣∣
=

1

d
|Wf (b1 + b2, a1 + a2)| =

1√
d
,

where the last equality holds because f is a bent (n,m)-Boolean function. This completes

the proof. □

Corollary 3.2. Let n be even and f be a bent (n, n/2)-Boolean function. Then Theorem 3.1

gives
√
d+ 1 RMUBs of Rd.

Our second construction uses MNBC (n, n)-function to construct
√
d + 1 RMUBs of

Rd. For any (n, n)-Boolean function f , let the set Sf be defined by Sf = {a ∈ F2n |
Trn1 (af(X)) is not bent}. In 2018, Pott et al. [15] showed that for an MNBC (n, n)-function

f , |Sf | = 2n/2 and Sf is a linear space of dimension n/2 over F2. One may note that in

the proof of the mutually unbiased-ness of two bases Ba1 and Ba2 in Theorem 3.1, we use

the bent-ness of the component function Trm1 ((a1 + a2)f(X)). For an MNBC (n, n)-function

f , define a set S ⊂ Fd such that for a1, a2 ∈ S with a1 ̸= a2, the component function

Trn1 ((a1 + a2)f(X)) is bent, i.e., a1 + a2 ̸∈ Sf . The following lemma gives the cardinality of

the set S.

Lemma 3.3. Let f be an MNBC (n, n)-function. Let S ⊂ Fd be such that for a1, a2 ∈ S
with a1 ̸= a2, the component function Trn1 ((a1 + a2)f(X)) is bent. Then |S| =

√
d.

Proof. Let F2n be viewed as a vector space over F2 of dimension n, i.e., Fn
2 . Since Sf is a

linear space of dimension n/2 over F2, it is a subspace of Fn
2 . Consider the quotient space

V := Fn
2/Sf having cardinality 2n/2. Let π : Fn

2 → Fn
2/Sf be the canonical projection linear
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transformation defined by π(v) = v+Sf . By definition, ker(π) = Sf . Now, for any s1, s2 ∈ Fn
2 ,

the condition s1 + s2 /∈ Sf is equivalent to

π(s1 + s2) ̸= 0 =⇒ π(s1) + π(s2) ̸= 0 =⇒ π(s1) ̸= π(s2).

Let the distinct cosets of Sf in Fn
2 be C1, C2, . . . , C2n/2 . Construct the set S by choosing

exactly one representative si from each coset Ci. For any two distinct si, sj ∈ S, they belong

to different cosets, meaning π(si) ̸= π(sj) and hence si + sj /∈ Sf . Thus, |S| ≥ 2n/2. Now,

suppose |S| = 2n/2 + 1 then there must exist at least two distinct elements sa, sb ∈ S such

that they belong to the same coset and hence sa + sb ∈ Sf . This completes the proof. □

The following theorem shows that an MNBC (n, n)-function f can be used to construct√
d+ 1 RMUBs of Rd.

Theorem 3.4. Let f be an MNBC (n, n)-function, where n is even. For any a ∈ S consider

the orthonormal basis Ba = {va,b | b ∈ Fd}, where va,b is defined by

va,b =

(
(−1)Tr

n
1 (af(X)+bX)

√
d

)
X∈Fd

.

Then the set B = {Ba | a ∈ S} together with the standard basis B∞ form RMUBs of Rd.

Proof. Notice that, for any two vectors va1,b1 and va2,b2 , taken from two different bases Ba1

and Ba2 , repectively, we have

|⟨va1,b1 , va2,b2⟩| =
1

d

∣∣∣∣∣∣
∑
X∈Fd

(−1)Tr
n
1 ((a1+a2)f(X)+(b1+b2)X)

∣∣∣∣∣∣ = 1√
d
,

where the last equality holds because a1, a2 ∈ S. This completes the proof. □

3.2. Our optimal construction of RMUBs using Kerdock codes. In Theorem 3.4,

we have seen that even if we use MNBC (n, n)-function f , we are able to construct at most√
d+1 many RMUBs. Instead of using bent components of a single (n, n)-Boolean function,

we now consider a set of n variable quadratic Boolean functions such that the sum of any two

elements of this set is bent. Recall that, for every nonnegative integer r and every positive

integer n ≥ r, the Reed-Muller code RM(r, n) of order r, length 2n and dimension
∑r

i=0

(
n
i

)
is the binary linear code of all words of length 2n corresponding to the evaluations over F2n

of all the Boolean functions f : F2n → F2 of algebraic degree at most r. For any a ∈ F2n−1 ,

where n is even, define a Boolean function fa from F2n−1 × F2 → F2 in the following way

(3.4) fa(X,Xn) = Trn−1
1

n−2
2∑

i=1

(aX)2
i+1

+XnTr
n−1
1 (X).

Then the Kerdock codes Kn of length 2n and dimension 2n are defined as

Kn =
⋃

a∈F2n−1

fa +RM(1, n).
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The functions fa, where a ∈ F2n−1 , have the special property that for any a1, a2 ∈ F2n−1 with

a1 ̸= a2 the function fa1 + fa2 is bent. In the following theorem, we use the functions fa to

construct d/2 + 1 RMUBs of Rd.

Theorem 3.5. Let n be an even positive integer. For any a ∈ F2n−1 consider the orthonormal

basis Ba = {va,b | b ∈ F2n}, where va,b is defined as

va,b =

(
(−1)fa(X)+Trn1 (bX)

√
d

)
X∈Fd

.

Then the standard basis B∞ and the set B = {Ba | a ∈ F2n−1} form RMUBs of Rd.

4. Our new constructions for ARMUBs

In this section, we use (n, n)-Boolean functions to construct ARMUBs of Rd, where d = 2n.

Notice that for (n, n)-Boolean functions f , va,b in (3.1) reduces to

(4.1) va,b =

(
(−1)Tr

n
1 (af(X)+bX)

√
d

)
X∈Fd

.

It is worth mentioning here that if we change the roles of a and b in (4.1) and take f

to be a bijective function then this is precisely the generic construction given by Cao and

Chou [8]. Thus, our construction is more general in the sense that it holds for non-permutation

functions as well. We would also like to point out that if f is a permutation, then the sets

Bb = {va,b | a ∈ Fd}, with b ∈ Fd together with B∞ will also form d + 1 ARMUBs. More

precisely, in the following matrix

M =


va1,b1 va2,b1 · · · vad,b1
va1,b2 va2,b2 · · · vad,b2
...

...
...

va1,bd va2,bd · · · vad,bd


each column of M forms an orthonormal basis of Rd. However, if f is a permutation then

each row will also form an orthonormal basis of Rd.

For any (n, n)-Boolean function f of odd degree, the orthonormal bases Ba = {va,b | b ∈ Fd}
for a ∈ Fd, where va,b is defined in (4.1), together with the standard basis B∞ give (d + 1)

ARMUBs having upper bound δ = deg(f)−1√
d

. However, by choosing the function f suitably,

we can significantly improve this bound. We now recall the following lemma which gives a

bound on the maximum absolute value of the Walsh spectrum entries of any (n, n)-Boolean

function.

Lemma 4.1. (Sidelnikov-Chabaud-Vaudenay (SCV) bound) Let f be an (n, n)-Boolean func-

tion. Then

(4.2) max
a,b∈Fd
a̸=0

|Wf (a, b)| ≥
√
2d.
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From the above lemma, we infer that for any (n, n)-Boolean function f of odd degree, we

have
√
2/

√
d ≤ δ ≤ (deg(f)− 1)/

√
d. It is well-known that the SCV bound can be tight only

if n is odd and the functions f that achieve (4.2) with equality are called Almost Bent (AB)

function. The following theorem gives d+1 ARMUBs of Rd, where d = 2n with n odd. Thus,

when n is odd, we are getting d+1 many ARMUBs with δ =
√
2/

√
d whereas with δ = 1/

√
d,

we have only 2 RMUBs.

Theorem 4.2. Let f be an almost bent (n, n)-Boolean function, where n is odd. Then the

orthonormal bases Ba = {va,b | b ∈ Fd} for a ∈ Fd, where va,b is defined in (4.1), together

with the standard basis B∞ give d+ 1 ARMUBs having upper bound δ =
√
2/
√
d.

Remark 4.3. The Gold function X2i+1 over F2n, where n is odd and gcd(i, n) = 1 is an AB

function. Thus, [8, Theorem 3.3] is a particular case of Theorem 4.2.

When n is even then the best known bound for the maximum absolute value of the Walsh

spectrum entries of any (n, n)-Boolean function is 2
√
d. Unlike AB functions for odd n, there

is no specific name given to the class of functions, in the even n case, attaining the bound

2
√
d. Table 1 gives, upto the CCZ-equivalence, known classes of power maps that achieve

the bound 2
√
d, when n is even. The following theorem gives d + 1 ARMUBs of Rd, when

Sr. No. e Conditions

1. 2n−1 − 1

2. 22i + 1 n = 2m, m > 1, gcd(i,m) = 1

3. 24i − 22i + 1 n = 2m, m > 1, gcd(i,m) = 1

4. 2m + 2
m+1

2 + 1 n = 2m

5. 2m+1 + 3 n = 2m
Table 1. Known monomialsXe on F2n , upto CCZ-equivalence, having Walsh

spectrum {0,±2
√
d}.

d = 2n with n even.

Theorem 4.4. Let n be even and f(X) = Xe be a power map over F2n, where e is one of

the exponents given in Table 1. Then the orthonormal bases Ba = {va,b | b ∈ Fd} for a ∈ Fd,

where va,b is defined in (4.1), together with the standard basis B∞ give d+1 ARMUBs having

upper bound δ = 2/
√
d.

5. Conclusion

We connected highly nonlinear Boolean functions to RMUBs and ARMUBs of the d di-

mensional real vector space Rd, where d = 2n. We then used this connection, when n is even,

to give two methods of constructing
√
d+1 many RMUBs using bent (n, n/2)-Boolean func-

tion and MNBC (n, n)-function. We also proposed a method of constructing d/2+1 RMUBs

of Rd, where d = 2n with n even, using the Kerdock codes by interpreting them as Boolean

functions. Further, we constructed d+ 1 ARMUBs for odd and even n having upper bound
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√
2/

√
d and 2/

√
d, respectively. We also showed that in the generic construction method of

Cao and Chou [8], we can relax the permutation condition on f by reversing the roles of a

and b.
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Appendix

In Theorem 3.5, if we choose n = 4, then we get 9 RMUBs. Here, we give precise description

of all the 9 RMUBs of R16 using Theorem 3.5. Consider the following quadratic bent Boolean

https://arxiv.org/abs/quant-ph/0502024
https://arxiv.org/abs/quant-ph/0502024
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functions in four variables x1, x2, x3, x4.

f0 = 0,

f1 = x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4,

f2 = x1x4 + x2x3 + x3x4,

f3 = x1x2 + x1x3 + x3x4,

f4 = x1x2 + x1x4 + x2x3,

f5 = x1x3 + x2x3 + x2x4,

f6 = x1x3 + x1x4 + x2x4,

f7 = x1x2 + x2x4 + x3x4.

Then the Kerdock code K4 of length 24 is given by

K4 =

7⋃
i=0

fi +RM(1, 4),

where RM(1, 4) is the first order Reed-Muller code of length 24. For any fixed fi, i ∈
{0, 1, . . . , 7}, Let Mfi be the 16× 16 matrix, whose rows are given by the vectors

vb = ((−1)fi+Tr41(bX))X∈F24
,

where b ∈ F24 . Then the matrices Mfi , i = 0, 1, . . . , 7 together with the standard basis M∞

form 9 RMUBs of R16.

Mf0 =



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1

1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1

1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1

1 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1

1 −1 1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1

1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 1 1

1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1 1 −1

1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1

1 −1 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1 −1 1

1 1 −1 −1 1 1 −1 −1 −1 −1 1 1 −1 −1 1 1

1 −1 −1 1 1 −1 −1 1 −1 1 1 −1 −1 1 1 −1

1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1

1 −1 1 −1 −1 1 −1 1 −1 1 −1 1 1 −1 1 −1

1 1 −1 −1 −1 −1 1 1 −1 −1 1 1 1 1 −1 −1

1 −1 −1 1 −1 1 1 −1 −1 1 1 −1 1 −1 −1 1


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Mf1 =



1 1 1 −1 1 −1 −1 −1 1 −1 −1 −1 −1 −1 −1 1

1 −1 1 1 1 1 −1 1 1 1 −1 1 −1 1 −1 −1

1 1 −1 1 1 −1 1 1 1 −1 1 1 −1 −1 1 −1

1 −1 −1 −1 1 1 1 −1 1 1 1 −1 −1 1 1 1

1 1 1 −1 −1 1 1 1 1 −1 −1 −1 1 1 1 −1

1 −1 1 1 −1 −1 1 −1 1 1 −1 1 1 −1 1 1

1 1 −1 1 −1 1 −1 −1 1 −1 1 1 1 1 −1 1

1 −1 −1 −1 −1 −1 −1 1 1 1 1 −1 1 −1 −1 −1

1 1 1 −1 1 −1 −1 −1 −1 1 1 1 1 1 1 −1

1 −1 1 1 1 1 −1 1 −1 −1 1 −1 1 −1 1 1

1 1 −1 1 1 −1 1 1 −1 1 −1 −1 1 1 −1 1

1 −1 −1 −1 1 1 1 −1 −1 −1 −1 1 1 −1 −1 −1

1 1 1 −1 −1 1 1 1 −1 1 1 1 −1 −1 −1 1

1 −1 1 1 −1 −1 1 −1 −1 −1 1 −1 −1 1 −1 −1

1 1 −1 1 −1 1 −1 −1 −1 1 −1 −1 −1 −1 1 −1

1 −1 −1 −1 −1 −1 −1 1 −1 −1 −1 1 −1 1 1 1



Mf2 =



1 1 1 1 1 1 −1 −1 1 −1 1 −1 −1 1 1 −1

1 −1 1 −1 1 −1 −1 1 1 1 1 1 −1 −1 1 1

1 1 −1 −1 1 1 1 1 1 −1 −1 1 −1 1 −1 1

1 −1 −1 1 1 −1 1 −1 1 1 −1 −1 −1 −1 −1 −1

1 1 1 1 −1 −1 1 1 1 −1 1 −1 1 −1 −1 1

1 −1 1 −1 −1 1 1 −1 1 1 1 1 1 1 −1 −1

1 1 −1 −1 −1 −1 −1 −1 1 −1 −1 1 1 −1 1 −1

1 −1 −1 1 −1 1 −1 1 1 1 −1 −1 1 1 1 1

1 1 1 1 1 1 −1 −1 −1 1 −1 1 1 −1 −1 1

1 −1 1 −1 1 −1 −1 1 −1 −1 −1 −1 1 1 −1 −1

1 1 −1 −1 1 1 1 1 −1 1 1 −1 1 −1 1 −1

1 −1 −1 1 1 −1 1 −1 −1 −1 1 1 1 1 1 1

1 1 1 1 −1 −1 1 1 −1 1 −1 1 −1 1 1 −1

1 −1 1 −1 −1 1 1 −1 −1 −1 −1 −1 −1 −1 1 1

1 1 −1 −1 −1 −1 −1 −1 −1 1 1 −1 −1 1 −1 1

1 −1 −1 1 −1 1 −1 1 −1 −1 1 1 −1 −1 −1 −1


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Mf3 =



1 1 1 −1 1 −1 1 1 1 1 1 −1 −1 1 −1 −1

1 −1 1 1 1 1 1 −1 1 −1 1 1 −1 −1 −1 1

1 1 −1 1 1 −1 −1 −1 1 1 −1 1 −1 1 1 1

1 −1 −1 −1 1 1 −1 1 1 −1 −1 −1 −1 −1 1 −1

1 1 1 −1 −1 1 −1 −1 1 1 1 −1 1 −1 1 1

1 −1 1 1 −1 −1 −1 1 1 −1 1 1 1 1 1 −1

1 1 −1 1 −1 1 1 1 1 1 −1 1 1 −1 −1 −1

1 −1 −1 −1 −1 −1 1 −1 1 −1 −1 −1 1 1 −1 1

1 1 1 −1 1 −1 1 1 −1 −1 −1 1 1 −1 1 1

1 −1 1 1 1 1 1 −1 −1 1 −1 −1 1 1 1 −1

1 1 −1 1 1 −1 −1 −1 −1 −1 1 −1 1 −1 −1 −1

1 −1 −1 −1 1 1 −1 1 −1 1 1 1 1 1 −1 1

1 1 1 −1 −1 1 −1 −1 −1 −1 −1 1 −1 1 −1 −1

1 −1 1 1 −1 −1 −1 1 −1 1 −1 −1 −1 −1 −1 1

1 1 −1 1 −1 1 1 1 −1 −1 1 −1 −1 1 1 1

1 −1 −1 −1 −1 −1 1 −1 −1 1 1 1 −1 −1 1 −1



Mf4 =



1 1 1 −1 1 1 −1 1 1 −1 1 1 1 −1 −1 −1

1 −1 1 1 1 −1 −1 −1 1 1 1 −1 1 1 −1 1

1 1 −1 1 1 1 1 −1 1 −1 −1 −1 1 −1 1 1

1 −1 −1 −1 1 −1 1 1 1 1 −1 1 1 1 1 −1

1 1 1 −1 −1 −1 1 −1 1 −1 1 1 −1 1 1 1

1 −1 1 1 −1 1 1 1 1 1 1 −1 −1 −1 1 −1

1 1 −1 1 −1 −1 −1 1 1 −1 −1 −1 −1 1 −1 −1

1 −1 −1 −1 −1 1 −1 −1 1 1 −1 1 −1 −1 −1 1

1 1 1 −1 1 1 −1 1 −1 1 −1 −1 −1 1 1 1

1 −1 1 1 1 −1 −1 −1 −1 −1 −1 1 −1 −1 1 −1

1 1 −1 1 1 1 1 −1 −1 1 1 1 −1 1 −1 −1

1 −1 −1 −1 1 −1 1 1 −1 −1 1 −1 −1 −1 −1 1

1 1 1 −1 −1 −1 1 −1 −1 1 −1 −1 1 −1 −1 −1

1 −1 1 1 −1 1 1 1 −1 −1 −1 1 1 1 −1 1

1 1 −1 1 −1 −1 −1 1 −1 1 1 1 1 −1 1 1

1 −1 −1 −1 −1 1 −1 −1 −1 −1 1 −1 1 1 1 −1


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Mf5 =



1 1 1 1 1 −1 −1 1 1 1 −1 −1 1 −1 1 −1

1 −1 1 −1 1 1 −1 −1 1 −1 −1 1 1 1 1 1

1 1 −1 −1 1 −1 1 −1 1 1 1 1 1 −1 −1 1

1 −1 −1 1 1 1 1 1 1 −1 1 −1 1 1 −1 −1

1 1 1 1 −1 1 1 −1 1 1 −1 −1 −1 1 −1 1

1 −1 1 −1 −1 −1 1 1 1 −1 −1 1 −1 −1 −1 −1

1 1 −1 −1 −1 1 −1 1 1 1 1 1 −1 1 1 −1

1 −1 −1 1 −1 −1 −1 −1 1 −1 1 −1 −1 −1 1 1

1 1 1 1 1 −1 −1 1 −1 −1 1 1 −1 1 −1 1

1 −1 1 −1 1 1 −1 −1 −1 1 1 −1 −1 −1 −1 −1

1 1 −1 −1 1 −1 1 −1 −1 −1 −1 −1 −1 1 1 −1

1 −1 −1 1 1 1 1 1 −1 1 −1 1 −1 −1 1 1

1 1 1 1 −1 1 1 −1 −1 −1 1 1 1 −1 1 −1

1 −1 1 −1 −1 −1 1 1 −1 1 1 −1 1 1 1 1

1 1 −1 −1 −1 1 −1 1 −1 −1 −1 −1 1 −1 −1 1

1 −1 −1 1 −1 −1 −1 −1 −1 1 −1 1 1 1 −1 −1



Mf6 =



1 1 1 1 1 −1 1 −1 1 −1 −1 1 1 1 −1 −1

1 −1 1 −1 1 1 1 1 1 1 −1 −1 1 −1 −1 1

1 1 −1 −1 1 −1 −1 1 1 −1 1 −1 1 1 1 1

1 −1 −1 1 1 1 −1 −1 1 1 1 1 1 −1 1 −1

1 1 1 1 −1 1 −1 1 1 −1 −1 1 −1 −1 1 1

1 −1 1 −1 −1 −1 −1 −1 1 1 −1 −1 −1 1 1 −1

1 1 −1 −1 −1 1 1 −1 1 −1 1 −1 −1 −1 −1 −1

1 −1 −1 1 −1 −1 1 1 1 1 1 1 −1 1 −1 1

1 1 1 1 1 −1 1 −1 −1 1 1 −1 −1 −1 1 1

1 −1 1 −1 1 1 1 1 −1 −1 1 1 −1 1 1 −1

1 1 −1 −1 1 −1 −1 1 −1 1 −1 1 −1 −1 −1 −1

1 −1 −1 1 1 1 −1 −1 −1 −1 −1 −1 −1 1 −1 1

1 1 1 1 −1 1 −1 1 −1 1 1 −1 1 1 −1 −1

1 −1 1 −1 −1 −1 −1 −1 −1 −1 1 1 1 −1 −1 1

1 1 −1 −1 −1 1 1 −1 −1 1 −1 1 1 1 1 1

1 −1 −1 1 −1 −1 1 1 −1 −1 −1 −1 1 −1 1 −1


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Mf7 =



1 1 1 −1 1 1 1 −1 1 1 −1 1 −1 −1 1 −1

1 −1 1 1 1 −1 1 1 1 −1 −1 −1 −1 1 1 1

1 1 −1 1 1 1 −1 1 1 1 1 −1 −1 −1 −1 1

1 −1 −1 −1 1 −1 −1 −1 1 −1 1 1 −1 1 −1 −1

1 1 1 −1 −1 −1 −1 1 1 1 −1 1 1 1 −1 1

1 −1 1 1 −1 1 −1 −1 1 −1 −1 −1 1 −1 −1 −1

1 1 −1 1 −1 −1 1 −1 1 1 1 −1 1 1 1 −1

1 −1 −1 −1 −1 1 1 1 1 −1 1 1 1 −1 1 1

1 1 1 −1 1 1 1 −1 −1 −1 1 −1 1 1 −1 1

1 −1 1 1 1 −1 1 1 −1 1 1 1 1 −1 −1 −1

1 1 −1 1 1 1 −1 1 −1 −1 −1 1 1 1 1 −1

1 −1 −1 −1 1 −1 −1 −1 −1 1 −1 −1 1 −1 1 1

1 1 1 −1 −1 −1 −1 1 −1 −1 1 −1 −1 −1 1 −1

1 −1 1 1 −1 1 −1 −1 −1 1 1 1 −1 1 1 1

1 1 −1 1 −1 −1 1 −1 −1 −1 −1 1 −1 −1 −1 1

1 −1 −1 −1 −1 1 1 1 −1 1 −1 −1 −1 1 −1 −1


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