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ABSTRACT. We establish a connection between (Approximately) Real Mutually Unbiased
Bases (ARMUBs) of the d dimensional real vector space R?, where d = 2", and Walsh
transform of certain highly nonlinear (n,m)-Boolean functions. When n is odd, then the
state of the art results in this domain allow constructing 2 Real Mutually Unbiased Bases
(RMUBES), whereas for n even this is d/2 + 1 [Cameron and Seidel, 1973]. This result has
been proved using a different technique in [Boykin et al., 2005]. Here we present another
proof using the Kerdock codes and interpreting them as Boolean functions. Further, we
show that for both odd and even n we can construct d + 1 many ARMUBs with a little
compromise in the inner products. More precisely, when n is odd, the inner product between
two vectors from two different bases is at most v/2/+/d and is achieved for Almost Bent (AB)
functions. When n is even, then this bound is 2/ V/d. Moreover, we show that using the
generic construction method of Cao and Chou [Bull. Aust. Math. Soc., 2016], one can relax

the permutation condition on f by reversing the roles of a and b.

1. INTRODUCTION

The history of mutually unbiased bases goes back to the seminal work of Schwinger [16],
where he showed that if B and B’ are two orthonormal bases of the d-dimensional Hilbert
space C% such that

1
|(b, V)| = - forall b€ B and vVen,

then no information can be retrieved when a quantum system which is prepared in a basis
state B is measured with respect to the basis B’. We say such bases B and B’ Mutually
Unbiased Bases (MUBs). MUBs have applications in quantum cryptography, where they are
the quantum states used in most QKD protocols [3, 4, 9]. Let N(d) denote the maximum
cardinality of any set containing pairwise MUBs of CY. It is well-known [2, 11] that N(d) <
d + 1 and the equality holds when d is a prime power. We call this set of d + 1 bases, a
complete set of MUBs, or simply a complete MUB. The exact value of N(d) is not known for
any dimension d which is divisible by at least two distinct primes, not even in the smallest
dimension d = 6. A long-standing open problem in quantum physics is whether or not
N(d) = d+ 1 holds for any dimension d > 6 that is not a prime power.

Another interesting problem in this direction is to find MUBs which are also real. Such
MUBs are called Real Mutually Unbiased Bases (RMUBs). Let M (d) denote the maximum
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cardinality of any set containing pairwise RMUBs of R?. As the problem is more constrained
here, and thus M (d) is even small. A general upper bound [6, 11] for M (d) is d/2+ 1. In the
particular case when d = p™, where p is a prime number, we have
1 ifp>2,
M(d) =12 if p=2 and n is odd,
d/2+1 if p=2 and n is even.
One may refer to [5, Table 1] for a comprehensive view on RMUBs. This scarcity of MUBs

of C? for composite numbers d and RMUBs of R? led the authors of [17] to define what is
now known as Approximately Mutually Unbiased Bases (AMUBs).

Definition 1.1. Let C? be the d-dimensional Hilbert space. The orthonormal bases of C%
in the set B = {Bj,..., By} are called AMUBs if for all u € B;,v € B;,1 <i# j <N, we

have |(u,v)| < &, where
{0 ( )0 ()

When AMUBSs are also real then we call them Approximately Real Mutually Unbiased
Bases (ARMUBS).

1.1. Contribution & Organization. In this extended abstract, we shall restrict ourselves
to dimensions d = 2", where n is a positive integer, and study the problem of constructing
RMUBs and ARMUBs of R? from the perspective of (n, m)-Boolean functions, where m < n.
We first establish a connection between the inner product values of two vectors taken from
two different bases of R? and the Walsh spectrum of (n, m)-Boolean functions. In this regard,
in Section 2, we state some preliminary results that will be used in subsequent sections. Our
contributions are as follows.

e Section 3 connects (n, m)-Boolean functions, where n is even and m < n, to RMUBs.
In Subsection 3.1, we present two constructions of v/d + 1 many RMUBs, where d =
2", using bent (n,n/2)-Boolean functions and maximum number of bent component
(n,n)-functions. This is a suboptimal result as we can have at most d/2 + 1 many
RMUBs.

e In Subsection 3.2, we describe a methodology to obtain d/2 + 1 many RMUBs using
Kerdock codes. The main result is presented in Theorem 3.5. Note that this was
first identified in [7] and later an alternative proof was given in [5]. Our result is
arrived through a different technique exploiting the properties of the bent functions
in Kerdock codes.

e In Section 4, we consider the approximate versions of RMUBs. Given the tight upper
bounds from [7], the relaxation of inner product values is mandatory. We construct
d+1 ARMUBS for both odd and even n. In our construction, when n is odd, the inner
product between two vectors from two different bases is at most v/2/v/d , and this
significantly increases the number of ARMUBSs to d 4+ 1 from only 2 RMUBs, with a

slight compromise in the inner product values. This result is available in Theorem 4.2
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and is achieved for Almost Bent (AB) functions that exist only if n is odd. When n is
even, then the inner product values in our construction are bounded by 2/ v/d and this
result is explained in Theorem 4.4. Here, the improvement is from d/2 + 1 RMUBs
to d + 1 ARMUBSs by doubling the inner product values. These results have been
obtained exploiting different classes, for example, Gold, Kasami, Welch, Niho and
Inverse functions. Additionally, we have noted that using the generic construction
method of [8], we can relax the permutation condition of the function f by reversing
the roles of certain parameters, namely a and b.

Section 5 concludes this extended abstract.

2. PRELIMINARIES

Let Fy; be the finite field with d = p™ elements. In F;, we have two finite abelian groups,
namely, the additive group and the multiplicative group of ;. In this extended abstract, we
shall mainly focus on the characters pertaining to the additive group of the finite field and
we shall use the term additive characters of F; for them. Let Tr} be the absolute trace map
from F; to IFp, then the function x; defined by

27 n

xi(c) = e T for all ¢ € Fy,

is a homomorphism from F; into the multiplicative group U of complex numbers of absolute
value 1, and is called an additive character of Fy. All additive characters of F; can be
expressed in terms of x; and are defined as, for b € Fy, xp(c) = xi1(be) for all ¢ € Fy.
We can obtain the trivial additive character xo by taking b = 0, for which yo(c) = 1 for
all ¢ € Fy. The additive characters of Fy satisfy the following orthogonality relations. For
additive characters x, and y3, we have

0 for a # b,
d for a =0.

(2.1) 3 (O () =

CGFd

Let x be a nontrivial additive character of Fy, and let f(X) € F4[X] be a polynomial of
degree £ > 0. Then the sums of the form . x(f(X)) are called Weil sums. The problem
of evaluating such character sums explicitly is difficult. It is easy to observe that when degree
of f is 1, then the Weil sum is zero. When the degree of f is 2 and the characteristic of the
finite field is odd, then (see [13, Theorem 5.37])

(2.2) > x(f(X)| = V.
XeFy

For polynomials of degree > 3, we have following bound for the absolute value of the Weil

sums, which is popularly known as Weil’s bound.



4

Lemma 2.1. [13, Theorem 5.38] Let f(X) € Fyq[X] be a polynomial of degree £ > 0 with
ged(4,d) =1 and let x be a nontrivial additive character of By, then

(2.3) > x(f0))| < (0 =1V,

XeFy

The first result on explicit sets of complete MUBs in the case of primes p > 5 was due
to Alltop [1]. Using the absolute value of the Weil sums (2.2) for polynomials of degree 2,
Klappenecker and Rotteler [12] generalized the results of Alltop [1] to prime power dimensions.
More precisely, using Weil sums (2.2), the authors gave a short proof of the following lemma
which was first proved by Wootters and Fields [19] and later proved by Chaturvedi [10] and
Bandyopadhyay et al. [2] using different techniques.

Lemma 2.2. [12, Theorem 2| Let Fy be a finite field of odd characteristic. Define B, =
{vap | b€ Fq}, where

1
Vap = ﬁx(aXz +bX)xer,.

Then the standard basis Bss and the sets B, with a € Fy form a complete MUB of C®.

In [8], Cao and Chou used the orthogonality of additive characters and the Weil bound (2.3)
to give the following generic constructions of AMUBs of C? using permutation polynomials
over the finite field Fy.

Lemma 2.3. [8, Theorem 3.1] Let ¢ be a positive integer with ged(¢,d) = 1 and f(X) € Fy[X]
is a permutation polynomial of degree £ over Fy. Denote by B, = {vayp | b € Fg} the set of

vectors given by

Vap = MX(ULX +0f (X)) xery

Vd

where 6 is a map from Fq to C such that |0(a)| =1 for all a € Fyq. Then the standard basis
By and the sets B, with a € Fyq form AMUBs of C¢.

In the above construction, for any permutation polynomial f(X) € Fy[X] of degree ¢ with
ged(¢,d) = 1, we get an upper bound 6 = (£ —1)/+/d. In the remaining part of this extended
abstract, we shall assume that p = 2 and denote x(X) by (—1)T7(X),

3. CONNECTING BOOLEAN FUNCTIONS AND RMUBS

In this section, we shall show the relation between the Walsh spectrum of (n, m)-Boolean
functions and RMUBs of R¢, where d = 2". Let f be an (n, m)-Boolean function, where
m < n. We denote, by Tr} and Tr", absolute trace functions from F; to Fo and from Fom to
Fs, respectively. For any a € Fom and b € Fy, define the vector

51) ((_1)Tr1n<af<xn+m<b><)>
. Va,p = .
XelFy

Vd
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Then the set By = {vqyp | b € Fg} forms an orthonormal basis of R?. As, for any by, by € Fy,
we have
1 if by = bo,

1 ¥
(32) <Ua,b1 ; Ua,b2> = & Z (_1)T (a2 X) - 0 otherwise
XeFy .

Let B = {B, | a € Fam} be the set of 2™ orthonormal bases of RY. It is easy to observe that
the inner product of two vectors v,, , and vg, ,, taken from two different bases B,, and B,,,
is given by

1

(Vay by Vagby) = = Z (—1) T ((a1a2) X))+ ((br+b2) X)

XelFy

1
= ng(bl + bo, a1 + ag).

In the theory of (n, m)-Boolean functions, Wy : Fg x Fom — Z is called the Walsh transform
of f. The Walsh spectrum of f is the set of values {Wy(b,a) | b € Fg and a € Fam}. A highly
nonlinear function f is one where all the values in the Walsh spectrum have small magnitude.
This relationship suggests that highly nonlinear (n,m)-Boolean functions f can be used to
construct RMUBs and ARMUBs. It is well-known that

(3.3) anglnzjuzeFJWf(b, a)| > Vd,

and is known as the covering redius bound. The (n,m)-Boolean functions f which attain
the bound (3.3) with equality are called bent functions. Bent functions are extremal com-
binatorial objects with several areas of application, such as coding theory, maximum length
sequences, cryptography, the theory of difference sets to name a few. We refer interested
readers to the books [14, 18]. In the following subsection, we shall use bent components of
(n, m)-Boolean functions to construct RMUBs of R,

3.1. Bent components of (n, m)-Boolean functions and RMUBSs. Let f be an (n,m)-
Boolean function with n even and m < n. Boolean functions F, := Tr{*(af(X)) for a € F3,,
are called component functions of f. An (n, m)-Boolean function f is called bent (sometimes
also called vectorial bent) if and only if all its component functions F,, a € F5,. are bent.
Equivalently, f has 2" —1 bent components. Since bent (n, m)-Boolean functions exist if and
only if n is even and m < n/2, the maximum number of bent components of (n, m)-Boolean
functions with m > n/2 is strictly less than 2™ — 1. For (n,n)-Boolean functions f with n
even, Pott et al. [15] showed that the number of bent components can be at most 2" — 2"/
and that this bound is sharp. An (n,n)-Boolean function which attain this bound is called
maximum number of bent components (MNBC) (n,n)-function.

Recall that, when d = 2™ with n even then we have at most d/2 + 1 RMUBs of R?. Here,
we give two constructions of RMUBs from bent components of (n,m)-Boolean functions.
Our first construction uses bent (n, m)-Boolean functions and give 2™ + 1 RMUBs. Since

bent (n,m)-Boolean functions exist only for m < n/2, this construction can give at most
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2"/2 41 =+/d+1 many RMUBs. In the following theorem we shall use bent (n, m)-Boolean
functions, where n is even and m < n/2, to give 2™ + 1 RMUBs of R4,

Theorem 3.1. Let f be a bent (n,m)-Boolean function, where n is even and m < n/2.
Denote by By = {vap | b € Fq} the set of vectors given by

((_1)Tr1"<af(x>>+Tr’f<bX>)
Vb = .
XeFy

Vd
Then the standard basis Bo and the sets B, with a € Fom form RMUBs of R,
Proof. Let e; be an element of the standard basis of R, Then, for any a € Fom and b € Fy,

( ) (fl)Tr’ln(af(X))-FTr?(bX) ¢ X T 1
Vab, €i)| = or some X € = —.
b \/& d \/a

The orthonormality of the bases B,, where a € Fam has been shown in (3.2). It only remains

we have

to show that the absolute value of the inner product of two vectors taken from two different
bases is exactly 1/\/3 For any a1, as € Fom, a1 # a9 and by, by € Fy, we have

|<Ua1 b1 Vas b2>’ = % Z (_1)Tr{”((a1+a2)f(X))+Tr?((b1+b2)X)

XelFy
= L 1+ b + )] = =
d ’ NZA
where the last equality holds because f is a bent (n,m)-Boolean function. This completes
the proof. O

Corollary 3.2. Let n be even and f be a bent (n,n/2)-Boolean function. Then Theorem 3.1
gives vV/d+1 RMUBs of R,

Our second construction uses MNBC (n, n)-function to construct v/d + 1 RMUBs of
R For any (n,n)-Boolean function f, let the set Sy be defined by Sy = {a € Fon |
Tri(af(X)) is not bent}. In 2018, Pott et al. [15] showed that for an MNBC (n, n)-function
£y |Ss] = 22 and S; is a linear space of dimension n/2 over Fo. One may note that in
the proof of the mutually unbiased-ness of two bases B,, and B,, in Theorem 3.1, we use
the bent-ness of the component function Tr7"((a; + ag) f(X)). For an MNBC (n,n)-function
f, define a set S C F; such that for a;,a2 € S with a1 # a2, the component function
Tri((a1 + a2) f(X)) is bent, i.e., a1 + az & S¢. The following lemma gives the cardinality of
the set S.

Lemma 3.3. Let f be an MNBC (n,n)-function. Let S C Fy be such that for ay,as € S
with ay # ag, the component function T (a1 + az) (X)) is bent. Then |S| = V/d.

Proof. Let Fan be viewed as a vector space over [F of dimension n, i.e., F3. Since Sy is a
linear space of dimension n/2 over Fy, it is a subspace of F§. Consider the quotient space
V :=TFy/S¢ having cardinality 272 Let - F3 — 5 /S¢ be the canonical projection linear
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transformation defined by 7(v) = v+S}. By definition, ker(7) = Sy. Now, for any s1, so € Fy,
the condition s1 4 s3 ¢ Sy is equivalent to

(s14+52) #0 = w(s1) +7(s2) #0 = 7(s1) # w(s2).

Let the distinct cosets of Sy in F3 be C1,C%,...,Cy/2. Construct the set S by choosing
exactly one representative s; from each coset C;. For any two distinct s;,s; € S, they belong
to different cosets, meaning (s;) # 7(s;) and hence s; + s; ¢ Sy. Thus, |S| > 22, Now,
suppose |S| = 22 4 1 then there must exist at least two distinct elements s,, s, € S such
that they belong to the same coset and hence s, + s, € Sy. This completes the proof. O

The following theorem shows that an MNBC (n,n)-function f can be used to construct
Vd+ 1 RMUBs of R

Theorem 3.4. Let f be an MNBC (n,n)-function, where n is even. For any a € S consider
the orthonormal basis Bq = {vayp | b € Fq}, where vqy is defined by

((UTT?(af(X)—i-bX))
Va,b = .
\/& XeF,

Then the set B = {B, | a € S} together with the standard basis Boo form RMUBs of R.

Proof. Notice that, for any two vectors v,, 5, and vg, p,, taken from two different bases B,

and B,,, repectively, we have

1 n X)+(b1+b2) X 1
|<Ua1,b1,Ua2,b2>| = g Z (71)Tr1((a1+a2)f( JHbi+82)X)| - ﬁa
XeFy
where the last equality holds because aq,as € S. This completes the proof. ]

3.2. Our optimal construction of RMUBs using Kerdock codes. In Theorem 3.4,
we have seen that even if we use MNBC (n,n)-function f, we are able to construct at most
vd+ 1 many RMUBs. Instead of using bent components of a single (n,n)-Boolean function,
we now consider a set of n variable quadratic Boolean functions such that the sum of any two
elements of this set is bent. Recall that, for every nonnegative integer r and every positive
integer n > r, the Reed-Muller code RM (r,n) of order r, length 2" and dimension Y°;_, (%)
is the binary linear code of all words of length 2" corresponding to the evaluations over Fon
of all the Boolean functions f : Fon — o of algebraic degree at most r. For any a € Fyn-1,
where n is even, define a Boolean function f, from Fyn—1 X Fo — Fo in the following way

n—2
2

(3.4) fa(X, X0) = TP S (aX)PH ) + X T H(X).
=1

Then the Kerdock codes K, of length 2" and dimension 2n are defined as

Kn= |J fa+tRM(1,n).

aE]FQn,1
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The functions f,, where a € Fyn—1, have the special property that for any a,as € Fon-1 with
a1 # ay the function f,, + fa, is bent. In the following theorem, we use the functions f, to
construct d/2 4+ 1 RMUBs of R

Theorem 3.5. Letn be an even positive integer. For any a € Fon—1 consider the orthonormal
basis B, = {vqyp | b € Fan}, where vay ts defined as

((_1)fa(X)+Tr§‘(bX) )
Vg p = .
\/& XeFy

Then the standard basis Boy and the set B = {Bgy | a € Fon-1} form RMUBs of R?.

4. OUR NEW CONSTRUCTIONS FOR ARMUBS

In this section, we use (n,n)-Boolean functions to construct ARMUBs of R?, where d = 2.
Notice that for (n,n)-Boolean functions f, v, in (3.1) reduces to

(71)Tr’f(af(X)+bX)
(4.1) Va,b = ( .
XeF,

Vd

It is worth mentioning here that if we change the roles of @ and b in (4.1) and take f
to be a bijective function then this is precisely the generic construction given by Cao and
Chou [8]. Thus, our construction is more general in the sense that it holds for non-permutation
functions as well. We would also like to point out that if f is a permutation, then the sets
By = {vqp | a € Fq}, with b € Fy together with By, will also form d + 1 ARMUBs. More
precisely, in the following matrix

Var,br Yag,br " Vag,by

Vai,ba  Vagba *°° Vagbe
M= i

Vaybg  Vaz,bg " Vagbg

each column of M forms an orthonormal basis of R¢. However, if f is a permutation then
each row will also form an orthonormal basis of RY.

For any (n,n)-Boolean function f of odd degree, the orthonormal bases B, = {v,p | b € Fq}
for a € Fy, where v, is defined in (4.1), together with the standard basis B give (d + 1)

ARMUBs having upper bound § = deg(/)—1 However, by choosing the function f suitably,

Vd
we can significantly improve this bound. We now recall the following lemma which gives a
bound on the maximum absolute value of the Walsh spectrum entries of any (n,n)-Boolean

function.

Lemma 4.1. (Sidelnikov-Chabaud-Vaudenay (SCV) bound) Let f be an (n,n)-Boolean func-
tion. Then
(4.2) max [W;(a,b)| > v2d.

a,bigd
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From the above lemma, we infer that for any (n,n)-Boolean function f of odd degree, we
have v/2/vd < § < (deg(f) —1)/v/d. Tt is well-known that the SCV bound can be tight only
if n is odd and the functions f that achieve (4.2) with equality are called Almost Bent (AB)
function. The following theorem gives d+1 ARMUBs of R?, where d = 2" with n odd. Thus,
when n is odd, we are getting d+ 1 many ARMUBs with § = \/Q/\/& whereas with § = 1/\/(?,
we have only 2 RMUBs.

Theorem 4.2. Let f be an almost bent (n,n)-Boolean function, where n is odd. Then the
orthonormal bases B, = {vap | b € Fq} for a € Fy, where v,y is defined in (4.1), together
with the standard basis Bs give d + 1 ARMUBs having upper bound § = v/2/V/d.

Remark 4.3. The Gold function X2+ gyer Fon, where n is odd and ged(i,n) =1 is an AB
function. Thus, [8, Theorem 3.3] is a particular case of Theorem 4.2.

When n is even then the best known bound for the maximum absolute value of the Walsh
spectrum entries of any (n,n)-Boolean function is 2v/d. Unlike AB functions for odd n, there
is no specific name given to the class of functions, in the even n case, attaining the bound
2v/d. Table 1 gives, upto the CCZ-equivalence, known classes of power maps that achieve
the bound 2v/d, when n is even. The following theorem gives d + 1 ARMUBs of R? when

Sr. No. e Conditions
1. |
2. 2% 41 n=2m, m>1, ged(i,m)=1
3. 24 2241 |n=2m, m>1, gcd(i,m)=1
4. [2m42™ 41 n=2m
5. om+l 13 n=2m

TABLE 1. Known monomials X¢ on For, upto CCZ-equivalence, having Walsh
spectrum {0, +2v/d}.

d = 2™ with n even.

Theorem 4.4. Let n be even and f(X) = X¢ be a power map over Fon, where e is one of
the exponents given in Table 1. Then the orthonormal bases By = {vgyp | b € Fq} for a € Fy,
where Vg is defined in (4.1), together with the standard basis B, give d+1 ARMUBs having
upper bound 6 = 2/+/d.

5. CONCLUSION

We connected highly nonlinear Boolean functions to RMUBs and ARMUBs of the d di-
mensional real vector space R?, where d = 2". We then used this connection, when n is even,
to give two methods of constructing v/d + 1 many RMUBs using bent (n, n/2)-Boolean func-
tion and MNBC (n,n)-function. We also proposed a method of constructing d/2+1 RMUBs
of R?, where d = 2" with n even, using the Kerdock codes by interpreting them as Boolean
functions. Further, we constructed d + 1 ARMUBs for odd and even n having upper bound
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V2/ Vd and 2 / Vd, respectively. We also showed that in the generic construction method of
Cao and Chou [8], we can relax the permutation condition on f by reversing the roles of a

and b.
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functions in four variables z1, xs2, x3, 4.

Jo=0,

f1 = 2172 + 2123 + 2174 + T223 + D274 + T374,
fo = w174 + 2273 + 2374,

f3 = w172 + 2173 + 2374,

fa = 2122 + 2174 + W23,

f5s = 173 + T273 + T2T4,

fo = x123 + 2124 + 2274,

fr =x129 + X274 + T324.
Then the Kerdock code K4 of length 2% is given by
7
Ka=J fi+ BM(1,4),
i=0

where RM(1,4) is the first order Reed-Muller code of length 2*. For any fixed f;, i €
{0,1,...,7}, Let My, be the 16 x 16 matrix, whose rows are given by the vectors

4 Trd
vy = ((~1)FFON) v

where b € Fosa. Then the matrices My,, i = 0,1,...,7 together with the standard basis M
form 9 RMUBs of RS,

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1
11 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1
1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1
1 1 1 1 -1 -1 -1 -1 1 1 1 -1 -1 -1 -1
1 -1 -1 -1 1 -1 1 1 -1 -1 -1 1 -1 1
11 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1
1 -1 -1 -1 1 -1 1 -1 -1 1 -1 1 -1
Mp = 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1
1 -1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1
11 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1
1 -1 -1 1 -1 -1 1 -1 1 1 -1 -1 1 -1
1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1
1 -1 -1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1
11 -1 -1 -1 -1 1 -1 -1 1 1 1 -1 -1
1 -1 -1 1 -1 1 -1 -1 1 -1 1 -1 -1 1
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